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Hybrid approach for the dynamical simulation of proton and hydride
transfer in solution and proteins

SHARON HAMMES-SCHIFFER{ and SALOMON R. BILLETER

Department of Chemistry, 152 Davey Laboratory, Pennsylvania State University,
University Park, PA 16802, USA

A hybrid approach for simulating proton and hydride transfer reactions in
solution and proteins is described. The electronic quantum e� ects are incorporated
with an empirical valence bond potential. The nuclear quantum e� ects are
included with a mixed quantum±classical molecular dynamics method in which
the transferring hydrogen nuclei are represented by multidimensional vibrational
wavefunctions. The free energy pro®les are obtained as functions of a collective
reaction coordinate, and a mapping or umbrella potential is utilized to drive the
reaction over the barrier for infrequent events. The vibrationally adiabatic nuclear
quantum e� ects are incorporated into the free energy pro®les. The dynamics are
described with the molecular dynamics with quantum transitions (MDQT) surface
hopping method, which incorporates vibrationally non-adiabatic e� ects. The
MDQT method is combined with a reactive ¯ux approach to calculate the
transmission coe� cient and to investigate the real-time dynamics of reactive
trajectories. Nuclear quantum e� ects such as zero point energy, hydrogen
tunnelling and non-adiabatic transitions, as well as the dynamics of the solvent
and protein environment, are included during the generation of the free energy
pro®les and dynamical trajectories. This methodology provides detailed mechan-
istic information at the molecular level and allows the calculation of rates and
kinetic isotope e� ects. The feasibility of this approach is illustrated through an
application to hydride transfer in the enzyme liver alcohol dehydrogenase. This
approach may be extended for use with mixed quantum mechanical±molecular
mechanical potentials and alternative mixed quantum±classical molecular dy-
namics methods. It has also been generalized for multiple proton and proton-
coupled electron transfer reactions.
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1. Introduction
Proton and hydride transfer reactions play a vital role in a wide range of chemical

and biological processes. The simulation of these reactions is challenging due to the
importance of both electronic and nuclear quantum e� ects, as well as the dynamics
of the solvent and protein environment. The incorporation of electronic quantum
e� ects is required for the description of the breaking and forming of chemical bonds.
Nuclear quantum e� ects such as zero point energy, hydrogen tunnelling, and non-
adiabatic transitions have also been found to be signi®cant for proton and hydride
transfer reactions [1, 2]. In addition, recent experiments have suggested a signi®cant
impact of enzyme dynamics on hydride transfer reactions [3±5].

Numerous approaches have been utilized to study proton and hydride transfer
reactions in solution and enzymes. One approach is the use of classical molecular
dynamics simulations with molecular mechanical (MM) force ®elds [6, 7]. This
approach may elucidate dynamical aspects of reactant or product states, but it is
unable to probe the dynamical reaction path since MM force ®elds do not allow
bonds to break and form. Moreover, the nuclear quantum e� ects are not included in
standard classical molecular dynamics simulations. A variety of methods have been
developed to include the electronic and nuclear quantum e� ects in simulations of
proton and hydride transfer reactions.

Electronic quantum e� ects may be incorporated into these types of simulation by
the use of mixed quantum mechanical±molecular-mechanical (QM±MM) potentials
[8±12] or empirical valence bond (EVB) potentials [13, 14]. In QM±MM methods,
the system is divided into reactive and non-reactive portions. The reactive portion of
the system is treated quantum mechanically with semiempirical or ab initio methods,
while the non-reactive portion of the system is represented by a standard MM
potential. The various QM±MM methods di� er mainly in the treatment of the
boundary between the QM and MM portions. The alternative EVB potential
describes the reaction in terms of a small number of resonance structures (i.e.
valence bond (VB) states). The matrix elements between these VB states are
represented as MM terms ®tted to electronic structure calculations or experimental
data. In contrast with the QM±MM methods, the EVB potential [13] does not
require a partitioning between the QM and MM portions of the system. Moreover,
the EVB method is conceptually straightforward and often is nearly as computa-
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tionally e� cient as a standard potential. Both EVB and QM±MM potentials have
been used in conjunction with classical molecular dynamics simulations to study
proton transfer in solution and enzymes [15, 16]. Recently, a promising mixed
molecular orbital±valence bond (MO±VB) method has been developed and applied
to proton transfer in solution [17]. Although the EVB, QM±MM, and MO±VB
potentials allow bonds to break and form, these simulations did not include nuclear
quantum e� ects such as zero point energy and hydrogen tunnelling.

One powerful approach for incorporating nuclear quantum e� ects is the use of
centroid path integral methods. Many groups have used centroid path integral
methods to study equilibrium properties of proton transfer reactions in solution [18±
26] and enzymes [18±21]. This equilibrium centroid path integral approach, however,
does not describe non-equilibrium dynamical properties. Cao and Voth [27±30] have
developed the centroid molecular dynamics method to allow the study of dynamical
properties and Schmitt and Voth [31] have applied this method to proton transfer in
bulk water. Furthermore, recently several semiclassical methods have been devel-
oped and applied to gas-phase [32, 33] and model solvated proton transfer reactions
[34, 35].

An alternative to the path integral approach is the mixed quantum±classical
molecular dynamics approach, in which the transferring hydrogen nucleus is
represented by a QM wavefunction, while the other nuclei are treated classically.
The advantage of this approach is that it directly provides real-time dynamical
information. A variety of di� erent mixed quantum±classical methods have been
developed and applied to proton and hydride transfer reactions [18±23, 36±55]. Most
of these applications involved only the one-dimensional motion of a single hydrogen
nucleus. Recently, these methods have been applied to reactions involving three-
dimensional motion of a single hydrogen nucleus [56] and to multiple hydrogen
nuclei [57, 58]. These extensions required the development of methodology for the
e� cient and accurate calculation of multidimensional vibrational wavefunctions
[59].

The various mixed quantum±classical methods di� er in the treatment of the
interactions between the quantum and classical subsystems. In the adiabatic method,
the classical subsystem moves on a single adiabatic surface (typically the hydrogen
vibrational ground state). Several groups have used the adiabatic method to simulate
proton transfer in solution [23, 39±42]. This method is valid only in the adiabatic
limit (i.e. when the proton transfer barrier is low).

Numerous methods have been developed to include vibrationally non-adiabatic
e� ects in simulations. In the mean ®eld methods, the classical subsystem follows an
average path derived from a mixture of adiabatic states. Mean ®eld methods have
been used for the simulation of proton transfer in enzymes [47±49]. The mean ®eld
methods are useful in the adiabatic and non-adiabatic limits or when the adiabatic
states exert similar forces on the classical subsystem. For typical proton and hydride
transfer reactions, however, the adiabatic states have qualitatively di� erent charge
distributions and thus exert di� erent forces on the classical subsystem. Surface
hopping methods were designed to describe processes that end up in a mixture of
adiabatic states exerting di� erent forces on the classical subsystem [50, 60±78]. In
surface hopping methods, the classical subsystem moves according to a force derived
from a single adiabatic state with the possibility of non-adiabatic transitions among
the adiabatic states. Surface hopping methods have been used to simulate proton
transfer reactions in solution [50, 52] and enzymes [56]. In [79] it was shown that
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surface hopping describes branching processes more accurately than mean ®eld

methods do for one-dimensional model proton transfer systems. Since mean ®eld

methods are advantageous for processes involving long times in strong non-adiabatic

coupling regions or a large number of repeated entrances into such regions, recently
an approach that combines surface hopping and mean ®eld methods has been

developed [80, 81]. To date, this combined method has not yet been applied to

proton transfer reactions.

A variety of other approaches have also been applied to proton and hydride

transfer in solution and enzymes. For example, the combination of the Car±

Parrinello ab initio molecular dynamics method with equilibrium centroid path

integral calculations has been applied to proton transfer in water [25, 26]. These
simulations provide useful information about equilibrium properties but do not

allow the study of non-equilibrium dynamical properties. Another approach is the

calculation of semiclassical tunnelling corrections to a minimum energy reaction

path obtained with a QM±MM potential for proton and hydride transfer in enzymes

[82, 83]. Although these calculations include both electronic and nuclear quantum

e� ects, they do not include the dynamics of the majority of the enzyme during the

generation of the reaction path or the subsequent calculation of the tunnelling
corrections.

This review describes a hybrid approach for the real-time dynamical simulation

of proton and hydride transfer reactions in enzymes. The electronic quantum e� ects

are incorporated with an EVB potential, and the nuclear quantum e� ects of the

transferring hydrogen are incorporated with the mixed quantum±classical molecular

dynamics with quantum transitions (MDQT) surface hopping method. This

approach allows the calculation of rates and kinetic isotope e� ects, as well as the
analysis of real-time dynamical trajectories. The procedure for obtaining the rates

involves the calculation of both a transition state theory rate constant determined

from a free energy pro®le and a transmission coe� cient determined from an

ensemble of real-time MDQT trajectories.

The transition state theory rate constant is calculated from the expression

kTST ˆ
kBT

h
exp

¡¢Gy

kBT
; …1†

where ¢Gy is the free energy barrier for the reaction and kB is Boltzmann’s constant.

For the hybrid approach described in this review, the free energy barrier is

determined from free energy pro®les that depend on a collective reaction coordinate

analogous to the solvent coordinate in Marcus theory for electron transfer (ET) [14,
84±86]. A mapping or umbrella potential is used to drive the reaction over the barrier

for infrequent events. The free energy pro®les are calculated from molecular

dynamics simulations with a combination of perturbation formulae and thermo-

dynamic integration. The vibrationally adiabatic nuclear quantum e� ects are

included during the generation of these free energy pro®les by representing the

transferring hydrogen nuclei as multidimensional vibrational wavefunctions.

The transition state theory rate constant kTST de®ned in equation (1) is based
on the assumption that the rate is determined by the forward ¯ux through the

dividing surface (i.e. each trajectory passes through the dividing surface only one

time). In dynamical systems, the environment may cause trajectories to recross the
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dividing surface. The `exact’ rate constant kdyn including dynamical e� ects may be
expressed as

kdyn ˆ µkTST; …2†

where µ is the transmission coe� cient that accounts for recrossings of the dividing
surface. In standard classical molecular dynamics simulations, µ may be calculated
using reactive ¯ux methods for infrequent events [87±90]. The reactive ¯ux scheme
involves initiating a canonical ensemble of trajectories at the dividing surface and
propagating them backwards and forwards in time to determine the extent of barrier
recrossing. For the hybrid approach described in this review, the vibrationally non-
adiabatic nuclear quantum e� ects are included in the calculation of µ by combining
the MDQT surface hopping method with this reactive ¯ux scheme. This approach
allows the analysis of real-time reactive trajectories in the presence of a fully
dynamical solvent and protein environment.

In addition to presenting this hybrid approach, this review summarizes the results
from an initial application to hydride transfer in liver alcohol dehydrogenase
(LADH). LADH catalyses the reversible oxidation of alcohols to aldehydes or
ketones by the coenzyme nicotinamide dinucleotide (NAD‡). This enzyme was
chosen as the prototype for testing this methodology because of its biochemical
importance, the availability of a high-resolution crystal structure [91, 92] and
experimental kinetic isotope e� ect experiments indicating signi®cant hydrogen
tunnelling [1, 2, 93]. The rates and kinetic isotope e� ects were calculated for this
system, and the physical basis for the results were analysed in terms of changes in the
free energy barrier and transmission coe� cient. In addition, correlation functions
between speci®c geometrical properties of the system and the degree of dynamical
barrier recrossing were calculated to elucidate the dynamical role of the enzyme.
These simulations provide insight into the relation between enzyme dynamics and
enzyme function.

Furthermore, this review presents the extension of this hybrid approach to
multiple charge transfer reactions, namely double proton transfer and proton-
coupled ET (PCET). (In this review, PCET refers to the transfer of one electron
and one proton.) As shown in [94], typically a process involving N charge transfer
reactions may be described in terms of 2N VB states and N collective reaction
coordinates. Within this framework, double proton transfer and PCET are described
in terms of four VB states and two collective reaction coordinates. The calculation of
the two-dimensional free energy surfaces for these types of reaction is analogous to
the calculation of the one-dimensional free energy pro®les for single proton and
hydride transfer. For the case of double proton transfer, the hydrogen vibrational
wavefunctions depend on two nuclear coordinates rather than on only one. For the
case of PCET, the ET reaction is typically electronically non-adiabatic , leading to the
generation of mixed electronic±vibrational free energy surfaces for each ET state.
The rates and kinetic isotope e� ects may be calculated for both types of reaction. In
addition, the detailed mechanisms, such as whether the charge transfer reactions are
concerted or sequential, may be determined from an analysis of the two-dimensional
free energy surfaces and the real-time dynamical trajectories.

An outline of this review is as follows. Section 2 describes the hybrid approach
for the dynamical simulation of proton and hydride transfer reactions. In section 2.1
the incorporation of the electronic and nuclear quantum e� ects is described. Section
2.2 presents the methods for calculating the free energy surfaces as functions of a
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collective reaction coordinate, including the vibrationally adiabatic nuclear quantum
e� ects. Section 2.3 presents the approach for calculating dynamical e� ects combining
a reactive ¯ux method for infrequent events with the mixed quantum±classical
MDQT surface hopping approach. Section 3 describes the results of the initial
application of this methodology to LADH and the extensions to double proton
transfer and PCET reactions. Section 4 summarizes this approach and discusses
future directions.

2. Methodology
2.1. Two levels of quantum mechanics

The simulation of proton and hydride transfer reactions entails the incorporation
of both electronic and nuclear quantum e� ects. The electronic quantum e� ects are
required to describe the breaking and forming of chemical bonds. The nuclear
quantum e� ects of the transferring hydrogen nuclei are required to include proper-
ties such as zero point energy and hydrogen tunnelling.

2.1.1. Electronic quantum e� ects
The total Hamiltonian for a system with electronic coordinates Rel and nuclear

coordinates Rnuc is

Htot ˆ Tnuc ‡ Tel ‡ V…Rel; Rnuc†; …3†

where Tnuc and Tel represent the kinetic energies of the nuclei and electrons
respectively and V is the total potential energy of the system. (For notational
simplicity, the explicit dependence of the Hamiltonian on the coordinates and
momenta is omitted.) For an electronically adiabatic reaction, a Born±Oppenheimer
separation of the electrons and nuclei may be applied. In this case, the electronic
Hamiltonian is de®ned as

Hel ˆ Tel ‡ V…Rel; Rnuc†; …4†

and the nuclei are assumed to move on the potential energy surface Vel0…Rnuc†
de®ned as the lowest eigenvalue of the solution of the electronic time-independent
SchroÈ dinger equation:

HelÀ0…Rel; Rnuc† ˆ Vel0…Rnuc†À0…Rel; Rnuc†: …5†

This potential energy surface corresponds to the electronic ground state. As
described in the introduction, a variety of methods have been developed to
incorporate the electronic quantum e� ects in the potential energy surface
Vel0…Rnuc†. The hybrid approach described in this review centres on the EVB
potential, although the extension for use with a QM±MM potential will also be
discussed.

In the EVB method, equation (5) is solved by expanding the wavefunction

À0…Rel; Rnuc† in a basis of NVB VB states ¿i…Rel†. (For the simplest description of a
proton or hydride transfer reaction, only two VB states are required.) The electronic
Hamiltonian matrix ~HHel in this basis set has matrix elements Vij…Rnuc† ˆ h¿ijHelj¿jiRel

with h. . .iRel
indicating integration over the electronic coordinates Rel. In this basis

set, equation (5) becomes

~HHelc0…Rnuc† ˆ Vel0…Rnuc†c0…Rnuc†; …6†
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where c0…Rnuc† is an NVB-dimensional vector containing the coe� cients of the two
VB states for the electronic ground state wavefunction:

À0…Rel; Rnuc† ˆ
XNVB¡1

iˆ0

c0i…Rnuc†¿i…Rel†: …7†

The electronic ground state potential energy surface Vel0…Rnuc† is obtained by
diagonalization of ~HHel. Typically the matrix elements Vij…Rnuc† are represented as
analytical functional forms containing parameters ®t to electronic structure calcula-
tions or experimental data.

2.1.2. Nuclear quantum e� ects
In addition to these electronic quantum e� ects, the nuclear quantum e� ects of the

transferring hydrogen atom(s) must be incorporated into simulations of hydrogen
transfer reactions. For condensed-phase systems, this requires a mixed quantum±
classical description of the nuclei, in which the nuclear coordinates are divided into
the quantum coordinates r and the classical coordinates R: Rnuc ˆ …r; R†. In the
simplest case, only the transferring hydrogen nuclei are treated quantum mechani-
cally. The total nuclear Hamiltonian can be expressed as

Hnuc ˆ Tquant
nuc ‡ Tclass

nuc ‡ Vel0…r; R†; …8†

where Tquant
nuc and T class

nuc are the kinetic energies for the quantum and classical nuclei
respectively. The adiabatic vibrational wavefunctions for the quantum nuclei can be
calculated for ®xed classical coordinates R by solving the time-independent
SchroÈ dinger equation

Hquant
nuc Fn…r; R† ˆ °n…R†Fn…r; R†; …9†

where

Hquant
nuc ˆ Tquant

nuc ‡ Vel0…r; R†: …10†

When non-adiabatic e� ects from the excited vibrational states are required, equation
(9) must be solved for a range of states n.

A variety of methods have been developed to calculate the adiabatic vibrational
wavefunctions (i.e. to solve equation (9)). The use of analytical basis functions such
as Hermite polynomials is problematic owing to the computational expense of the
required numerical integration of the potential energy matrix elements and the bias
introduced by the choice of the centres and parameters associated with the basis
functions. The use of a grid basis set is advantageous since the costly calculation of
multidimensional integrals is avoided and the entire range of hydrogen coordinates is
treated without bias. The computational expense for the diagonalization of large
matrices required for a grid basis set is signi®cantly decreased through the use of
iterative methods such as the Lanczos [95], the Davidson [96] and other related
schemes [97±102]. The recently developed Fourier grid Hamiltonian multicon®gura-
tional self-consistent ®eld (FGH-MCSCF) method has been shown to be particularly
e� cient for the calculation of multidimensional hydrogen vibrational wavefunctions
[59].

In the FGH-MCSCF method, a vibrational wavefunction is expressed as a linear
combination of Nconfig single con®gurations, which are products of one-dimensional
wavefunctions:
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Fn…r; R† ˆ
XNconfig

I

Cn
I …R†

YNdim

p

Á
…p†
ip

…rp; R†
Á !

; …11†

where Ndim is the dimension of the quantum coordinate, r ˆ …r1; r2; . . . ; rNdim
†, and

the index I ˆ …i1; i2; . . . ; iNdim
†. For ®xed classical coordinates R, the variational

method is utilized to optimize the wavefunction Fn…r; R† with respect to the
coe� cients of the con®gurations Cn

I …R† and the one-dimensional wavefunctions

Á
…p†
ip

…rp; R†. A full con®guration interaction calculation is carried out in a truncated
one-dimensional wavefunction space (analogous to complete active space self-
consistent-®eld in electronic structure theory). If multiple states are required, a
state-averaged approach is used to obtain a set of orthogonal multidimensional
vibrational wavefunctions. The one-dimensional wavefunctions are represented
directly on a grid with Ngrid points in each dimension, and the kinetic energy matrix
elements are calculated with Fourier methods. This FGH-MCSCF approach avoids
the expensive diagonalization of large matrices and accurately describes ground and
excited state hydrogen vibrational wavefunctions.

Although methods such as the FGH-MCSCF method decrease the computa-
tional expense of calculating the vibrational wavefunctions, these types of grid
method require the calculation of the potential energy and forces at each grid point.
This calculation of the grid potential for each molecular dynamics time step is often
the bottleneck of mixed quantum±classical molecular dynamics simulations. The
calculation of this grid potential is more e� cient for an EVB potential than for a
standard QM±MM potential since the calculation of an EVB grid potential requires
only a single calculation of the complete potential energy for each time step (as well
as the much faster calculation of only the terms involving the quantum hydrogen
nuclei for each grid point). To decrease further the computational expense of the
calculation of the grid potential, recently a partial multidimensional grid generation
method was developed [103]. This method substantially decreases the number of
potential energy calculations (typically by more than an order of magnitude) by
avoiding these calculations for grid points with high potential energy.

2.2. Free energy pro®les
2.2.1. Fundamental aspects of free energy pro®les

As discussed in the introduction, in order to calculate the transition state theory
rate constant de®ned in equation (1), the free energy pro®le must be calculated. For
simplicity, ®rst we describe the calculation of the free energy pro®les in terms of an
EVB potential. At the end of this section, this formulation will be generalized for use
with QM±MM potentials.

For reactions involving a free energy barrier that is signi®cantly larger than the
thermal energy, the system must be driven over the barrier with a mapping or
umbrella potential. Within the two-state EVB formulation, a mapping potential
Vmap…r; R; ¶† may be de®ned as

Vmap…r; R; ¶† ˆ …1 ¡ ¶†V11…r; R† ‡ ¶V22…r; R†; …12†

where V11 and V22 are the diagonal elements of the EVB Hamiltonian. As the
parameter ¶ is varied from zero to unity, the reaction progresses from the reactant
VB state 1 to the product VB state 2. The alternative use of an umbrella potential
will be discussed below.
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A variety of reaction coordinates have been used to describe proton and hydride
transfer reactions. When the transferring hydrogen is treated classically, a physically
meaningful reaction coordinate is the collective reaction coordinate

L…c†…r; R† ˆ V22…r; R† ¡ V11…r; R†: …13†

This collective reaction coordinate is similar to the solvent coordinate used in
standard Marcus theory for ET reactions [14, 84±86]. This classical reaction
coordinate depends on both r and R. When the transferring hydrogen is treated
quantum-mechanicall y in mixed quantum±classical molecular dynamics simulations,
however, the reaction coordinate should not be a function of the quantum
coordinate r since the classical molecular dynamics samples the con®gurational
space of only the classical coordinates R. Moreover, the reaction coordinate

L…c†…r; R† de®ned in equation (13) does not distinguish between symmetric and
asymmetric hydrogen potential energy surfaces (or hydrogen vibrational wavefunc-
tions), as required in the framework of standard Marcus theory [84]. A quantum
reaction coordinate analogous to the classical collective reaction coordinate given
above is

L…q†…R† ˆ hF0…r; R†jV22…r; R† ¡ V11…r; R†jF0…r; R†ir; …14†

where h. . .ir indicates integration over the quantum coordinate r and F0…r; R† is the
ground state vibrational wavefunction. Note that, in practice, the classical and
quantum reaction coordinates are divided into discrete intervals (i.e. bins) repre-
sented by values Ln.

2.2.2. Classical free energy pro®le
The calculation of the classical free energy pro®le for the electronic ground state

potential Vel0…r; R† consists of three steps. In the ®rst step, the free energy
Fmap…Ln; ¶m† for the mapping potential along the reaction coordinate L…c†…r; R†
de®ned in equation (13) is calculated for each ¶m from the formula

exp‰¡­ Fmap…Ln; ¶m†Š ˆ Cmap…¶m†h¯…L…c†…r; R† ¡ Ln†i¶m
; …15†

where

h f …r; R†i¶m
ˆ

„
dr

„
dR f …r; R† exp‰¡­ Vmap…r; R; ¶m†Š„

dr
„

dR exp‰¡­ Vmap…r; R; ¶m†Š …16†

and ¯…L…c†…r; R† ¡ Ln† is a unitless quantity equal to unity if L…c†…r; R† is within the
bin represented by Ln and zero otherwise. In practice, h¯…L…c†…r; R† ¡ Ln†i¶m

is
calculated using a standard binning procedure during molecular dynamics simula-
tions governed by Vmap…r; R; ¶m†.

In the second step, the relative free energies for the mapping potential
corresponding to the same value of Ln but di� erent values of ¶m are determined
by calulating the factors Cmap…¶m† from the relation

Cmap…¶m† ˆ exp‰¡­ Fmaptot…¶m†Š
P

nh¯…L…c†…r; R† ¡ Ln†i¶m

: …17†

This relation is derived from the identity

exp‰¡­ Fmaptot…¶m†Š ˆ
X

n

exp‰¡­ Fmap…Ln; ¶m†Š; …18†
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where
P

n is a summation over all bins representing relevant values of Ln and the free
energy Fmaptot…¶m† is calculated using thermodynamic integration:

Fmaptot…¶m† ¡ Fmaptot…¶1† ˆ
Xm

m0ˆ1

¢¶m0
@Vmap…r; R; ¶†

@¶ ¶m0

* +

¶m0

: …19†

Note that this procedure avoids the arbitrary translation of the individual segments
of the free energy pro®le corresponding to di� erent values of ¶m. Moreover, the
degree of overlap of the neighbouring segments provides an indication of the
convergence of the calculation.

In the third step of this procedure, the classical free energy Fel0…Ln; ¶m† for the
electronic ground state potential Vel0…r; R† is calculated using a perturbation formula
[13, 104]

exp‰¡­ Fel0…Ln; ¶m†Š ˆ exp‰¡­ Fmap…Ln; ¶m†Š

hexpf¡­ ‰Vel0…r; R† ¡ Vmap…r; R; ¶m†Šgi¶m ;Ln;c …20†

where

h f …r; R†i¶m ;Ln ;c ˆ
„

dr
„

dR ¯…L…c†…r; R† ¡ Ln†f …r; R† exp‰¡­ Vmap…r; R; ¶m†Š
„

dr
„

dR ¯…L…c†…r; R† ¡ Ln† exp‰¡­ Vmap…r; R; ¶m†Š
: …21†

The quantity in angular brackets is calculated within the bins used in equation (15)
during molecular dynamics simulations governed by the mapping potential
Vmap…r; R; ¶m†. (Note that, for convenience, this binning procedure may be per-
formed after the simulations.)

2.2.3. Quantum free energy pro®le
For the generation of the quantum free energy pro®le, the vibrationally adiabatic

nuclear quantum e� ects are included. The quantum free energy Fel0;nuc0…Ln; ¶m†
associated with the energy of the ground-state hydrogen vibrational wavefunction
(de®ned as °0…R† in equation (9)) may be calculated from the perturbation formula

exp‰¡­ Fel0;nuc0…Ln; ¶m†Š ˆ exp‰¡­ Fmap…Ln; ¶m†Š

hexpf¡­ ‰°0…R† ¡ Vintmap…R; ¶m†Šgi¶m ;Ln ;q: …22†

Here h. . .i¶m ;Ln;q is de®ned as in equation (21) with L…c†…r; R† replaced by L…q†…R†, and

exp‰¡­ Vintmap…R; ¶m†Š ˆ Cr

…
dr exp‰¡­ Vmap…r; R; ¶m†Š; …23†

where Cr is a constant of dimension inverse volume in the coordinate space r. The
derivation of this perturbation formula is given in [56]. (Note that the constant Cr

does not a� ect the relative quantum free energies for di� erent values of Ln and ¶m.
For comparison between the classical and quantum free energies, however, Cr is set
to h¡3

„
dp exp…¡­ p2=2m†, where h is Planck’s constant and m is the mass of a

hydrogen atom.)

2.2.4. Extensions of free energy formulation
The formulation described above may be generalized for use with a QM±MM

potential. In this case, the classical reaction coordinate could be the position of the
transferring hydrogen relative to the donor and acceptor, and the quantum reaction
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coordinate could be hF0…r; R†jrjF0…r; R†ip. Another possibility would be to de®ne a
quantum reaction coordinate analogous to equation (14) as the energy di� erence
between the hydrogen bonded to its donor and to its acceptor (calculated with all
other nuclei ®xed). These alternative reaction coordinates would require testing to
ensure that they e� ectively distinguish between symmetric and asymmetric hydrogen
potential energy surfaces (or hydrogen vibrational wavefunctions).

When a QM±MM potential is used to simulate infrequent events, the reaction
could be driven over the barrier with an umbrella potential rather than a mapping
potential. For example, an umbrella potential could be de®ned as

Vumb…r; R; ¡m† ˆ Vel0…r; R† ‡ K ‰¡…r; R† ¡ ¡mŠ2; …24†

where K is a speci®ed constant and ¡…r; R† is a general function that may be de®ned
as a geometrical coordinate or a collective reaction coordinate. The free energy
surfaces could be calculated with the formulation described above by replacing Vmap

with Vumb.

2.3. Dynamical e� ects
2.3.1. Fundamental aspects of dynamical effects

As discussed in the introduction, the `exact’ rate constant kdyn including
dynamical e� ects is the product of the transition state theory rate constant and
the transmission coe� cient µ, which accounts for recrossings of the dividing surface.
In standard classical molecular dynamics simulations, µ may be calculated using
reactive ¯ux methods for infrequent events [87±90]. In this scheme, µ is calculated as
the ¯ux-weighted average of a quantity ¹ for a canonical ensemble of classical
molecular dynamics trajectories started at the dividing surface and integrated
backwards and forwards in time. The quantity ¹ corrects for multiple crossings of
the dividing surface (i.e. so that all trajectories that originate as reactants and end as
products are counted only once, no matter how many times they cross the dividing
surface, and all trajectories that go from reactants to reactants, from products to
products, or from products to reactants are not counted at all). In particular,

¹ ˆ 1=¬ for trajectories that have ¬ forward crossings and ¬ ¡ 1 backward crossings
of the dividing surface, and ¹ is zero otherwise.

The nuclear quantum e� ects may be incorporated into the calculation of µ by
combining a mixed quantum±classical molecular dynamics method with this reactive
¯ux method for infrequent events. As discussed in the introduction, a variety of
mixed quantum±classical molecular dynamics methods have been developed and
applied to proton and hydride transfer reactions in solution and enzymes. This
review focuses on the combination of the MDQT surface hopping method with the
reactive ¯ux scheme for infrequent events. At the end of this section, the general-
ization to other mixed quantum±classical molecular dynamics methods will be
discussed.

2.3.2. Molecular dynamics with quantum transitions
The fundamental principle of the MDQT method [50, 52, 60] is that an ensemble

of trajectories is propagated, and each trajectory moves classically on a single
adiabatic surface except for instantaneous transitions among the adiabatic states.
The adiabatic states Fn…r; R† are calculated at each classical molecular dynamics time
step by solving equation (9) with a method such as the Lanczos [95], Davidson [96] or
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FGH-MCSCF [59] scheme. The time-dependent wavefunction describing the
quantum nuclei is expanded in a basis of the Nad lowest-energy adiabatic states:

C…r; R; t† ˆ
XNad¡1

nˆ0

Cn…t†Fn…r; R†: …25†

The surface hopping algorithm is designed to apportion trajectories correctly among
the adiabatic states according to the quantum probabilities jCn…t†j2.

The classical nuclei evolve according to Newton’s classical equations of motion
with the e� ective potential

Veff …R† ˆ °k…R†; …26†

where k denotes the occupied adiabatic state and °k…R† is de®ned in equation (9). The
Hellmann±Feynman theorem can be utilized to obtain the corresponding e� ective
force

Feff ˆ ¡ Ñ R°k…R† ˆ ¡hFkjÑ RVel0…r; R†jFkir: …27†

Within the EVB description,

Ñ RVel0…r; R† ˆ
XNVB¡1

iˆ0

XNVB¡1

jˆ0

c0i…r; R†c0j…r; R† Ñ RVij…r; R†; …28†

where c0i…r; R† are elements of the vector c0…r; R† given in equation (6) and Vij…r; R†
are the EVB matrix elements. For fully variational multicon®gurational wavefunc-
tions (i.e. when the wavefunction is optimized for each individual state), the
Hellmann±Feynman forces are exact [105]. Note that the multicon®gurational
wavefunctions obtained with the state-averaged FGH-MCSCF method described
in [59] are not fully variational for each individual state. Thus, when using the FGH-
MCSCF approach, a su� cient number of con®gurations must be included to ensure
that the inaccuracies of the Hellmann±Feynman forces due to state averaging are
negligible.

The quantum amplitudes Cn…t† are obtained by integrating the time-dependent
SchroÈ dinger equation simultaneously with the classical equations of motion.
Substitution of equation (25) into the time-dependent SchroÈ dinger equation leads to

i·h _CkCk…t† ˆ
XNad¡1

nˆ0

Cn…t†‰°k…R†¯nk ¡ i·h _RR · dkn…R†Š; …29†

where the non-adiabatic coupling vector dkn is de®ned as

dkn…R† ² hFkjÑ RFnir ˆ hFkjÑ RVel0…r; R†jFnir

°n ¡ °k
: …30†

At each time step, Tully’s [60] `fewest-switches’ algorithm is invoked to determine
whether a quantum transition to another adiabatic state should occur. This algor-
ithm correctly apportions trajectories among the adiabatic states according to the
quantum probabilities jCn…t†j2 with the minimum required number of quantum
transitions (neglecting di� culties with classically forbidden transitions). According
to this algorithm, the probability of switching from the current state k to another
state n during the time interval between t and t ‡ dt is
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gkn ˆ max 0;
¡2 Re‰Ck…t†Cn…t† _RR · dnk Šdt

jCk…t†j2

Á !

: …31†

A uniform random number is selected at each time step to determine if a switch to
any state n will occur. If a switch to a di� erent state n does occur, then the velocities
must be adjusted to conserve energy. The velocities are adjusted as if they were
subjected to a force in the direction of the non-adiabati c coupling vector. If there is
not enough velocity in the direction of the non-adiabati c coupling vector to maintain
energy conservation, the system remains in the initial quantum state. Various
prescriptions for these so-called `classically forbidden transitions’ have been
proposed. The options include the following: maintain the original velocities, reverse
the velocities in the direction of the non-adiabatic coupling vector [50], or alter the
integration of the time-dependent SchroÈ dinger equation to eliminate completely
these classically forbidden transitions [79,106]. For the application presented in [56],
the optimal prescription was determined to be to maintain the original velocities.

2.3.3. Combining the molecular dynamics with quantum transitions method with the
reactive ¯ux approach

The use of the standard classical reactive ¯ux approach in conjunction with
MDQT is problematic since the probability of non-adiabatic transitions depends on
the quantum amplitudes, which depend on the history of the trajectory. Thus,
trajectories started at the dividing surface cannot be propagated backwards in time
with the MDQT method. (Backward propagation requires knowledge of the
quantum amplitudes at the dividing surface, which are unavailable.) In order to
address this problem, Hammes-Schi � er and Tully [107] developed a non-adiabatic
transition state theory that serves as the basis of a new method for simulating
infrequent events in reactions that evolve on multiple potential energy surfaces. In
this approach, trajectories are started at the dividing surface and propagated
backwards in time with a `®ctitious’ surface hopping algorithm that does not depend
on the quantum amplitudes. The trajectory is then propagated forwards in time,
retracing the exact same trajectory, integrating the quantum amplitudes and
calculating the probabilities for non-adiabatic transitions for each time step using
the true surface hopping algorithm. Each trajectory is assigned a weighting that
ensures that the overall results are identical with those that would have been
obtained with the true surface hopping algorithm.

In the implementation of this reactive ¯ux method for MDQT within the
framework of the methodology presented in this paper,

µ ˆ
PNtraj

iˆ1 … _RRi · n̂ni†wcan
i wsh

i ¹
PNtraj

iˆ1 … _RRi · n̂ni†wcan
i wsh

i

: …32†

Here Ntraj is the number of trajectories required to represent an ensemble, _RRi is the
initial velocity vector, n̂ni is the normal to the dividing surface, wcan

i is the weighting to
ensure a canonical distribution at the dividing surface and wsh

i is the weighting to
ensure the correct surface hopping probabilities for trajectory i. For the dividing
surface de®ned as L…q†…R† ˆ 0, the normal to the dividing surface is

n̂ni ˆ Ñ RL…q†…Ri†
j Ñ RL…q†…Ri†j

; …33†
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where

Ñ RL…q†…R† ˆ hF0jÑ R‰V22…r; R† ¡ V11…r; R†ŠjF0ir

‡ 2
XNad¡1

n6ˆ0

hF0j‰V22…r; R† ¡ V11…r; R†ŠjFnirdn0: …34†

For an ensemble of trajectories initiated at the dividing surface (i.e. con®gurations
with L…q†…R† ˆ 0 generated with the mapping potential Vmap…r; R; ¶m ˆ 0:5†),

wcan
i ˆ expf¡­ ‰°k…Ri† ¡ Vintmap…Ri; ¶m ˆ 0:5†Šg; …35†

where k is the vibrational adiabatic state occupied at the dividing surface. (Here we
assume a Boltzmann distribution of the vibrational adiabatic states at the dividing
surface.)

The weightings wsh
i are obtained from the backward propagation with the

®ctitious surface hopping algorithm and the subsequent forward propagation over
the exact same trajectory while integrating the quantum amplitudes and calculating
the probabilities of non-adiabatic transitions for the true surface hopping algorithm.
(Note that the quantum amplitudes for the forward propagation are initialized such
that the quantum amplitude of the occupied state after the backward propagation is
unity.) The weighting may be expressed as

wsh
i ˆ

Y½

·ˆ1

!·; …36†

where
Q½

·ˆ1 is over all time steps during the backward propagation and

!· ˆ
gkn

fkn

if a transition from state k to state n was attempted

ˆ 1 ¡
XNad¡1

n 6ˆk

gkn

Á !
1 ¡

XNad¡1

n6ˆk

fkn

Á !
if no transition was attempted:

,
…37†

Here gkn and fkn are the probabilities of a non-adiabatic transition from k to j for the
true and ®ctitious surface hopping algorithms respectively. One possible functional
form for fkn is

fkn ˆ ²‰1 ¡ exp…¡j _RR dknj¯t†Š; …38†

where ² is a constant typically set to 0.5. The true surface hopping probability gkn

(given in equation (31)) for Tully’s [60] fewest switches algorithm depends on the
quantum amplitudes, while the ®ctitious probability fkn does not. Note that this
weighting procedure is based on the assumption that both the ®ctitious and the true
MDQT surface hopping algorithms result in exact Boltzmann distributions among
the vibrational states for long times (i.e. after equilibration of the reactant or
product). This assumption is not rigorously valid, and the impact of this approxima-
tion is currently under investigation.

2.3.4. Extensions of the dynamical formulation
The basic principle of propagating trajectories backwards with a `®ctitious’

algorithm and weighting the trajectories accordingly to obtain results identical with
those that would have been obtained with a particular mixed quantum±classical
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method is general. Thus, this basic approach may be extended for use with other
mixed quantum±classical molecular dynamics methods. The combination of the
adiabatic method with the reactive ¯ux scheme is straightforward since the
propagation of the quantum amplitudes is not required. The procedure would be
identical with that described above except that the system would remain in a single
vibrational adiabatic state and the weighting wsh

i ˆ 1. The combination of the mean
®eld method with the reactive ¯ux scheme is more challenging since the quantum
amplitudes at the dividing surface are required for backward propagation of the
trajectories. One possible prescription would be to initiate the trajectories in pure
adiabatic states at the dividing surface and to propagate the amplitudes backward in
time according to the time-dependent SchroÈ dinger equation, allowing the classical
subsystem to move according to an average path obtained from the mixture of
adiabatic states. The weighting wsh

i would then be determined according to the
overlap of the resulting time-dependent wavefunction with a pure adiabatic state for
the reactant. The combination of the reactive ¯ux scheme with an approach that
mixes surface hopping and mean ®eld methods would require a more complicated
prescription.

3. Applications
3.1. Hydride transfer in enzymes

The initial application of the approach described in this review centred on
hydride transfer in the enzyme LADH. The mechanism of LADH involves both a
hydride transfer between the alcohol substrate and the NAD‡ cofactor and a proton
transfer from the substrate to the external solvent through a proton relay. Previous
electronic structure and classical force®eld calculations [108] imply that the proton
transfer occurs prior to the hydride transfer. Thus, the initial dynamical study [56]
focused on only the hydride transfer reaction after the proton relay, that is hydride
transfer from the alkoxide substrate to the NAD‡ cofactor. A portion of the active
site of LADH for this hydride transfer reaction is depicted in ®gure 1.

In [56], the hydride transfer reaction in LADH was described in terms of a two-
state EVB model. In the ®rst VB state, the hydride is bonded to the substrate (i.e. the
reacting complex is composed of benzyl alkoxide and NAD‡); in the second VB
state, the hydride is bonded to the cofactor (i.e. the reacting complex is composed of
benzaldehyde and NADH). The diagonal elements of the EVB Hamiltonian were
described by a modi®ed version of the GROMOS force ®eld 43A1 [109]. The
coupling and energy di� erence between the two VB states were assumed to be
constant and were chosen to ensure that the quantum free energy pro®le for the
reaction reproduced the experimental free energies of reaction and activation.

The free energy pro®les and transmission coe� cients calculated with the
approach described above provide insight into the signi®cance of nuclear quantum
e� ects. An example of a hydrogen vibrational wavefunction for a transition state of
the hydride transfer reaction in LADH is depicted in ®gure 2. The delocalization of
the wavefunction between the donor and acceptor carbon atoms provides an
indication that nuclear quantum e� ects are signi®cant. Further evidence is given
by the classical and quantum free energy pro®les shown in ®gure 3. Since the free
energy associated with the zero point motion is smaller for the transition state than
for the reactant and product, the nuclear quantum e� ects substantially decrease the
free energy barrier for this reaction. The calculated transmission coe� cient µ
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(including vibrationally non-adiabati c e� ects) is nearly unity, suggesting that

dynamical e� ects are not signi®cant for this reaction.

These simulations also provide insight into the physical basis for the observed

kinetic isotope e� ects for LADH. The quantum free energy pro®les for the transfer
of hydrogen, deuterium and tritium are given in ®gure 4. As expected, the free energy

barrier is lowest for hydrogen and highest for tritium. The kinetic isotope e� ects

resulting from these di� erent free energy barriers are in agreement with experi-

mentally measured values. The calculated transmission coe� cients µ for hydrogen

and deuterium are similar, suggesting that the kinetic isotope e� ect for LADH arises
mainly from di� erences in the free energy barrier rather than the dynamics.

This hybrid approach also allowed the analysis of individual real-time dynamical
reactive trajectories and a statistical ensemble of such trajectories for LADH.

Figure 5 depicts three representative trajectories for which the dividing surface is

S. Hammes-Schi � er and S. R. Billeter606

Figure 1. Portion of the active site of LADH, where CD and CA denote the donor and
acceptor carbon atoms respectively.

Figure 2. Depiction of a three-dimensional hydrogen vibrational wavefunction for a
transition state of the hydride transfer reaction in LADH.
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chosen to be L…q† ˆ 0. Figure 5…a† illustrates a reactive trajectory that exhibits only a
single crossing of the dividing surface, while ®gure 5…b† illustrates a non-reactive
trajectory that crosses the dividing surface once in the forward direction and once in
the backward direction. Figure 5…c† illustrates a reactive trajectory that crosses the
dividing surface twice in the forward direction and once in the backward direction.
Note that ®gures 5…a† and …b† do not exhibit any non-adiabatic transitions, while
®gure 5…c† exhibits a non-adiabatic transition near the dividing surface. In [110], a
detailed analysis of both the equilibrium simulations and the real-time dynamical
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Figure 3. Classical (ÐÐ) and quantum (- - - -) free energy pro®les for hydride transfer
in LADH.

Figure 4. Quantum free energy pro®les for the transfer of hydrogen (ÐÐ), deuterium (- - - -),
and tritium (± ± ±) in LADH.
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trajectories was performed to determine the relation between speci®c enzyme
motions and enzyme activity. The analysis of the equilibrium simulations provided
an indication of which geometrical properties impact the activation free energy
barrier. The analysis of the real-time dynamical trajectories provided an indication
of which geometrical properties impact the transmission coe� cient (i.e., were
correlated to the degree of dynamical recrossing of the barrier). The investigation
of the impact of protein mutations will provide additional information about the
relation between enzyme motion and function.

3.2. Double proton and proton-coupled electron transfer
Within the VB formulation [94], a process involving N charge transfer reactions

may be described in terms of 2N VB states and N linearly independent collective
reaction coordinates. Thus, double proton transfer and PCET reactions may be
described in terms of four VB states and two collective reaction coordinates.

S. Hammes-Schi � er and S. R. Billeter608

Figure 5. Three representative dynamical trajectories for hydride transfer in LADH: …a†
reactive trajectory; …b† non-reactive trajectory; …c† reactive trajectory with a non-
adiabatic transition and recrossings of the barrier. The time evolution of the quantum
reaction coordinate is shown on the left, and the time evolution of the energies of the
lowest two hydrogen vibrational states is shown on the right (where the occupied
state is indicated by a solid line).
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3.2.1. Double proton transfer
Figure 6 depicts the four relevant VB states for double proton transfer in the

formamidine-formic acid dimer. (Note that this VB model was introduced for a
similar double proton transfer interface in [111].) If the reactant corresponds to the
aa VB state, the physically meaningful collective reaction coordinates are

zp1 ˆ hF0…r; R†jVba…r; R† ¡ Vaa…r; R†jF0…r; R†ir

zp2 ˆ hF0…r; R†jVab…r; R† ¡ Vaa…r; R†jF0…r; R†ir;

zp3 ˆ hF0…r; R†jVbb…r; R† ¡ Vaa…r; R†jF0…r; R†ir:

…39†

As shown in [94], within the VB formulation these three reaction coordinates are not
linearly independent:

zp3 ˆ zp1 ‡ zp2: …40†

Thus, the free energy pro®les may be obtained as functions of only two of these three
collective coordinates (i.e. zp1 and zp2). For electronically adiabatic double proton
transfer, the electronic ground state Vel0…r; R† is obtained by diagonalizing the 4 4
EVB Hamiltonian matrix. The mapping potential required to drive this reaction over
the barrier could be de®ned as in equation (12) using the two VB states aa and bb. If
adequate sampling requires a weighting of the intermediate VB states ab and ba, this
expression for the mapping potential could be extended to include more mapping
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Figure 6. The four VB states for double proton transfer in the formamidine±formic
acid dimer.
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parameters and more VB states. Alternatively, a two-dimensional umbrella potential

(analogous to equation (24)) could be introduced to sample the full range of relevant

collective reaction coordinates zp1 and zp2.

The procedure for calculating the free energy surfaces and transmission coe� -
cients is analogous to that described above. For the calculation of the two-

dimensional free energy surfaces, the function ¯…L…q† ¡ Ln† is replaced by the

product ¯…zp1 ¡ z…m†
p1 †¯…zp2 ¡ z…n†

p2 †, and the quantities in angular brackets are calcu-

lated within two-dimensional bins. The transition state theory rate constant kTST

may be calculated using multidimensional transition state theory or Grote±Hynes

[112] theory (see also [113, 114]). If there are multiple minima, the individual

reactions may be treated independently and then combined according to an
appropriate kinetic scheme. This approach allows the description of both sequential

and concerted mechanisms. For the calculation of the transmission coe� cient, the

dividing surface must be chosen appropriately for each reaction in the two-

dimensional space.

Figure 7 depicts double proton transfer along a water chain. In this case, a three-

state VB model is adequate, where the extra proton resides on one of the three water

molecules in each VB state. Multistate VB models for an extra proton in water have
been developed by Vuilleumier and Borgis [115, 116] and by Schmitt and Voth [31,

117]. As for the formamidine±formic acid dimer, the free energy surfaces may be

calculated as functions of two collective coordinates, and the transition state theory

rate constant and transmission coe� cient may be calculated in the same manner as

described above. In related studies, the MDQT method has been applied to proton

transfer along water chains using the Stillinger potential [57, 58]. In this case, the

methods for infrequent events were not required since the reaction was driven by an
electric ®eld or by non-equilibrium initial conditions. These simulations indicate the

signi®cance of nuclear quantum e� ects and non-adiabati c transitions in water

chains. The methodology presented in this review will allow further investigation

of these types of multiple proton transfer reaction.

3.2.2. Proton-coupled electron transfer

Figure 8 depicts the four VB states for a PCET reaction between iron bi-

imidazoline complexes [118]. In the notation for the VB states, 1 and 2 denote the

electron transfer (ET) state, and a and b denote the proton transfer state. In this case,

the physically meaningful collective coordinates are

S. Hammes-Schi � er and S. R. Billeter610

Figure 7. Protonated water trimer with arrows indicating the double proton transfer reaction.
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Figure 8. The four VB states for PCET between iron bi-imidazoline complexes.
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zp ˆ hF0…r; R†jV1b…r; R† ¡ V1a…r; R†jF0…r; R†ir;

ze ˆ hF0…r; R†jV2a…r; R† ¡ V1a…r; R†jF0…r; R†ir;

zep ˆ hF0…r; R†jV2b…r; R† ¡ V1a…r; R†jF0…r; R†ir:

…41†

Again, as shown in [94], within the VB formulation these three solvent coordinates
are not linearly independent:

zep ˆ zp ‡ ze: …42†

Thus, the free energy surfaces should be obtained as functions of only two of these
three collective coordinates (i.e. zp and ze).

For PCET reactions such as that shown in ®gure 8, typically the electron transfer
reaction is electronically non-adiabatic, while the proton transfer reaction is
electronically adiabatic. Thus, the relevant free energy surfaces are the two sets of
ET diabatic surfaces corresponding to the two ET VB states 1 and 2. These surfaces
are obtained by diagonalizing two separate 2 2 EVB Hamiltonian matrices
(corresponding to 1a-1b and 2a-2b, respectively). ET diabatic free energy surfaces
depending on zp and ze have been obtained for PCET reactions using a multistate
continuum theory, in which the solvent is represented as a dielectric continuum [118±
120]. Furthermore, recently these two-dimensional free energy surfaces have been
obtained for a model PCET reaction in solution using molecular dynamics methods
with explicit solvent molecules [121]. The rates for PCET reactions have been
calculated by the application of the golden rule to the two sets of ET diabatic free
energy surfaces [120, 122].

The two-dimensional ET diabatic free energy surfaces and the dynamical
transmission coe� cient may be calculated with the formulation presented in this
review. As for double proton transfer, a two-dimensional umbrella potential may be
introduced to sample the full range of relevant collective solvent coordinates zp and
ze. Alternatively, the mapping potential could be used to sample the full range of zp

for each ET state, and an umbrella potential could be introduced to sample the full
range of ze. Analogous to the extension for double proton transfer, ¯…L…q† ¡ Ln† is
replaced by the product ¯…zp ¡ z

…m†
p †¯…ze ¡ z

…n†
e †, and the quantities in angular

brackets are calculated within two-dimensional bins. This approach allows the
investigation of the free energy surfaces for PCET in proteins as well as solution.
(Note that, under a set of well-de®ned and physically reasonable conditions, this
approach is equivalent to that used in [121] to obtain two-dimensional ET diabatic
free energy surfaces.) Dynamical e� ects may be included by initiating trajectories
near the non-adiabatic crossings of the two sets of ET diabatic free energy surfaces.
This is a direction for future research.

4. Conclusions
This review summarizes a hybrid approach for the real-time dynamical simula-

tion of proton and hydride transfer reactions in solution and proteins. The electronic
quantum e� ects are incorporated with an EVB potential that allows the relevant
bonds to break and form. The nuclear quantum e� ects of the transferring hydrogen
are included with a mixed quantum±classical approach that represents the transfer-
ring hydrogen nucleus by a three-dimensional wavefunction. The free energy pro®les
are obtained as functions of a collective reaction coordinate using a mapping or
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umbrella potential to drive the reaction over the barrier. The vibrationally adiabatic
nuclear quantum e� ects are incorporated into these free energy pro®les. The
dynamical e� ects are described with the MDQT surface hopping method, which
incorporates non-adiabatic transitions among the adiabatic hydrogen vibrational
states. The MDQT method is combined with a reactive ¯ux method to allow the
calculation of the dynamical transmission coe� cient and the investigation of the
real-time dynamics of reactive trajectories.

This hybrid approach is very powerful for a number of reasons. Nuclear
quantum e� ects such as zero point energy, hydrogen tunnelling, and non-adiabatic
transitions among vibrational states are incorporated in a computationally practical
manner. These nuclear quantum e� ects are included during the generation of the free
energy pro®les and dynamical trajectories rather than added as corrections to
classical simulations. The dynamical motion of the complete environment (i.e.
solvent and/or protein) is included in these calculations. The resulting real-time
dynamical reactive trajectories provide detailed mechanistic information at the
molecular level. An analysis of geometrical properties during the equilibrium and
dynamical simulations provides insight into the relation between speci®c enzyme
motions and enzyme activity. Furthermore, this approach allows the calculation of
rates and kinetic isotope e� ects for comparison with experiment and for predictive
purposes.

The computational feasibility of this approach has been illustrated through the
application to hydride transfer in the enzyme LADH. In this application, the
transferring hydride is treated as a three-dimensional vibrational wavefunction,
and the classical subsystem includes more than 75 000 atoms. The calculated kinetic
isotope e� ects agree with experimental data. The dynamical transmission coe� cients
were found to be nearly unity, indicating only a small contribution from dynamical
recrossings of the barrier. Individual reactive trajectories were analysed to provide
insight into the detailed mechanism. In addition, a statistical ensemble of trajectories
was analysed to determine correlations between geometrical properties of the system
and the degree of dynamical recrossing of the barrier. These correlations provide
insight into the relation between enzyme dynamics and function. The investigation of
the impact of protein mutations on these correlations, as well as on the free energy
barrier and transmission coe� cient, will provide further insight into this relation.

This hybrid approach may be extended in a variety of directions. For example,
the EVB potential could be replaced by a QM±MM potential based on semiempirical
or ab initio electronic structure methods. In this case, an umbrella potential may be
used to drive the reaction over the barrier. A multistate EVB potential has been
implemented for multiple charge transfer reactions such as double proton transfer
and proton-coupled ET. Within the VB description, the free energy pro®les for a
process involving N charge transfer reactions depends on N linearly independent
collective reaction coordinates. This formulation provides information about the
detailed mechanism, such as whether the charge transfer reactions are concerted or
sequential. Grid methods have been developed for the e� cient calculation of the
multidimensional vibrational wavefunctions required for the QM treatment of
multiple hydrogen nuclei. These grid methods may also be used to treat additional
modes, such as the proton donor±acceptor vibration, quantum mechanically at the
same level as the transferring hydrogen nucleus. Another possible extension is to
replace the MDQT surface hopping method with an alternative non-adiabatic
molecular dynamics method. The speci®c procedure for propagating trajectories
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backward from the transition state without a priori knowledge of the quantum
amplitudes must be modi®ed for di� erent non-adiabatic molecular dynamics
methods.

As a result of the ¯exibility and computational e� ciency of this hybrid approach,
it is applicable to a wide range of proton and hydride transfer reactions. These types
of simulation will enhance our understanding of the fundamental chemical and
physical principles of charge transfer reactions. In addition, these simulations will
elucidate the detailed mechanisms of biologically and chemically important pro-
cesses.
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